A systematic review of risk factors during first year of life for early childhood caries # PAMELA MARGARET LEONG^{1,2}*, MARK GREGORY GUSSY³, SU-YAN L. BARROW⁴, ANDREA DE SILVA-SANIGORSKI^{1,5} & ELIZABETH WATERS¹ ¹Jack Brockoff Child Health & Wellbeing Program & McCaughey Centre, School Population Health, University of Melbourne, Carlton, Vic., Australia, ²Department of Dentistry, Royal Children's Hospital, Parkville, Vic., ³Department of Dentistry & Oral Health, La Trobe Rural Health School, La Trobe University, Bendigo, Vic., ⁴Melbourne Dental School, University of Melbourne, Carlton, Vic., and ⁵Dental Health Services Victoria, Melbourne, Vic., Australia International Journal of Paediatric Dentistry 2013; 23: 235-250 **Background.** Early childhood caries (ECC) describes dental caries affecting children aged 0–71 months. Current research suggests ECC has important aetiological bases during the first year of life. Gaps in knowledge about disease progression prevent the effective and early identification of 'at risk' children. **Aim.** To conduct a systematic review of research studies focusing on (a) acquisition and colonization of oral bacteria and ECC and (b) risk and/or protective factors in infants aged 0–12 months. **Design.** Ovid Medline and Embase databases (1996–2011) were searched for RCT, longitudinal, cross-sectional and qualitative studies. Two inves- tigators undertook a quality assessment for risk of bias. **Results.** Inclusion criteria were met for (a) by four papers and for (b) by 13 papers; five papers were rated medium or high quality. Bacterial acquisition/colonization and modifying factor interrelationships were identified, but their role in the caries process was not clarified. Key risk indicators were infant feeding practices (nine papers), maternal circumstances and oral health (6) and infant-related oral health behaviours (4). **Conclusion**. This review confirmed that factors occurring during the first year of life affect ECC experience. Despite heterogeneity, findings indicated maternal factors influence bacterial acquisition, whereas colonization was mediated by oral health behaviours and practices and feeding habits. ### Introduction Early childhood caries (ECC) describes dental caries affecting children 71 months of age or younger¹. Studies in nonindustrialized and industrialized countries have reported caries prevalence in very young children to vary between 28% and 82%²⁻⁶ depending on the population studied. There are few Australian studies reporting caries prevalence in infants and preschool-aged children with most Australian data coming from school-aged children^{7, 8} accessing the public school dental services in each state. This data indicate that 47% of 5- to 6-year-old children have cavitated carious lesions, and of these lesions, 80% are active and untreated9. A recent Australian study estimated that 45% of hospital 'oral cavity' admissions for children aged <2 years of age were related to dental caries¹⁰. It is important to understand the natural history of ECC in order to implement effective preventive strategies. Prevention and early intervention are critical as children with ECC may experience pain and infection of dental origin and exhibit poor sleeping patterns, altered eating habits and behaviour, poor self-esteem11, reduced speech production and communication skills, low body weight and height¹² and failure to thrive¹³. ¹⁴. Furthermore, ECC is a strong predictor of dental caries experience in later life¹⁵. Although ECC is recognized as multifactoral in nature, there are gaps in our knowledge as Correspondence to: Pamela Margaret Leong, Department of Dentistry, Royal Children's Hospital, Parkville, 50 Flemington Road, Vic., 3052 Australia. E-mail: pamandyin@gmail.com to how the risk factors interrelate and why some children suffer a greater burden of disease than others. In particular, little is known about the infant's oral environment prior to, and during, early tooth eruption. Influences in the first year of life may have an important effect on the health of the primary dentition. Most studies report on ECC once the teeth have erupted into the mouth and there are visible signs of the disease process, or on the interrelationship of bacteria between a mother and her child. For example, a recent systematic review of preschool-aged children and ECC yielded 120 papers, and of these, one paper investigated pre-dentate children only¹⁶. The present paper describes a systematic literature review addressing ECC during the first year of life. Two independent searches were undertaken to capture as many papers as possible addressing the overall research question: What factors occurring during an infant's first year of life influence the initiation and progression of ECC? The first objective was to address the association between the acquisition of oral cariogenic bacteria and caries outcomes in infants; the second objective was to identify the proposed determinants of ECC during the first year of life. #### Materials and methods # Search strategy Two searches were conducted to identify, describe, quality-appraise and synthesize published studies: first, exploring acquisition and colonization of oral bacteria in children during their first year of life and subsequent development of ECC; second, addressing/exploring the risk and/or protective factors for ECC in children aged up to 12 months. The outcomes of both searches were then synthesized. The search strategy undertaken is shown (Fig. 1). Separate searches of Medline Ovid SP and Embase Ovid SP electronic databases were undertaken (April 2011), storing results in separate Endnote libraries and deleting duplicates. The first sieving of papers, undertaken by two independent reviewers, examined papers by title and abstract according to inclusion and exclusion criteria as below. The first reviewer (PL) scrutinized all identified papers from both searches, and at least 10% of papers in each search were independently reviewed by a second reviewer (MG or SLB). Where title and/or abstract were unclear, the full text was obtained. All papers meeting the inclusion criteria were retrieved, and full texts were reviewed by two independent reviewers (Search addressing bacterial acquisition and colonization: by PL and MG; Search 2: addressing all proposed determinants of ECC: by PL and SLB), using screening questions of the Critical Appraisal Skills Programme (CASP)¹⁷. All excluded papers were recorded in a spreadsheet along with the reason for their exclu- **Fig. 1.** Flow chart of the search strategy used for two searches. sion. If reviewers disagreed on a paper, the protocol required them to discuss to consensus. Included papers were then quality-appraised using the full CASP criteria¹⁷. Finally, data were extracted onto a spread-sheet for analysis and synthesis. In addition, authors of papers requiring clarification on particular aspects of their study relevant to this review were contacted by email for further information. # Population sample and search terms Inclusion criteria for the population group in both searches required studies to report on children aged 0–12 months. Where a broader age range was reported in the paper, information relating specifically to 0- to 12-month-olds must have been included for the paper to be included in the present review. Search strings were determined with the assistance of two medical research librarians and modified as necessary for each database (Table 1). # Inclusion and exclusion criteria Additional to the age limitation, only papers published between 1996 and April 2011 were included. The latter limitation was applied because laboratory methods used to analyse cariogenic bacteria have progressed markedly since the mid-1990s, and it is unlikely that earlier published papers would supplement this review concerning current knowledge (S. Daspher, Personal communication). Papers where participants were physically, intellectually or medically compromised, or had syndromes, were excluded, as were papers other than primary studies (e.g. guidelines, recommendations, conference proceedings, letters or similar). Additional requirements applied to Search 1 (acquisition and colonization of oral bacteria and ECC) were a cariogenic bacterial assessment must have been undertaken for an infant by the time they were aged 12 months, and these infants must have also had a caries assessment by 18 months of age. The latter requirement was based upon the assumption that caries in newly erupting teeth may take several months to become clinically visible 18, and maxillary anterior teeth do not generally erupt until an infant is about 8–10 months of age. # Quality appraisal The CASP criteria¹⁷ were selected for this review as an established and accepted appraisal tool allowing for a broad range of study designs to be appraised. The criteria were developed by the Public Health Resource Unit of the UK National Health Service¹⁷ and applied to each study in the present review to enable assessment across three broad areas: study methodology (internal validity)20; reporting of results (reliability); and applicability or generalizability (external validity)²⁰, with particular reference to studies in Victorian/Australian populations. To enable inter-study comparisons, each area was then rated high, medium or low depending on the strength of reporting. An overall rating was then determined based on these outcomes, weighting 'materials and methods' and 'results' sections more heavily than 'applicability'. Working independently, quality appraisal was undertaken by the same two reviewers who reviewed the papers for inclusion and exclusion. Table 1. Search strings used for two searches. Search strings for Search 1 addressing the association between the acquisition of oral cariogenic bacteria and caries outcomes in infants: exp *Dental Caries/AND (*Streptococcus/or *Streptococcus mutans/or *Streptococcus sobrinus/or
*Saliva/or *Lactobacillus casei/or exp *Periodontal Diseases/) Search strings for Search 2 addressing all proposed determinants of early childhood caries (ECC): exp *Dental caries/AND *Streptococcus/or *Streptococcus mutans/or *Streptococcus sobrinus/or *Saliva/or *Lactobacillus casei/or exp *Periodontal Diseases/*Fluorides/or exp *Oral Hygiene/or *Oral health/or exp *Dental Prophylaxis/or (*Diet/or *Diet, Cariogenic) or (*Breast Feeding/or Feeding Methods/or *Bottle Feeding/) or exp *Infant Nutritional Physiological Phenomena/or *Parent—Child Relations/or *Mother—Child Relations/or exp *Mothers/or *Social Conditions/or exp *Socioeconomic Factors/or *Attitude/or exp *Attitude to Health/or *Child Rearing/or *risk/or *risk factors/ #### Results Search addressing the acquisition and colonization of cariogenic bacteria and ECC (Search 1) A total of 68 papers were identified in this search as shown (Fig. 2); two duplicates were excluded leaving 66 papers for review by title and abstract. Both reviewers agreed on all included and excluded papers. The first and second sieving excluded 62 papers. The main reasons for exclusion were because the papers did not report on children aged 12 months or younger (n = 28); did not report on studies (e.g. the paper was a review, report or guideline etc. n = 12); or were the outside scope of this review (n = 11). Four papers then remained for quality appraisal and data extraction (Table 2). The study by Wan *et al.*²¹ was rated as high overall and that of Teanpaisan *et al.*²² rated medium. Studies by Lindquist *et al.*²³ and Mohan *et al.*²⁴ were both rated as low. The studies all differed in design and methods used to col- lect, assess and report data; these influenced the ability to assess the consistency of findings across the studies and to make strong conclusions. Three studies were longitudinal21-23 and were rated as high21, medium22 and low23, respectively. The fourth study 24 used a cross-sectional design to determine a relationship between parent-reported infant feeding practices occurring during the previous week and bacterial colonization and caries experience. Wan et al.21 used a cohort from a prospective longitudinal (Table 2). The cohort was selected because there were no reportable levels of Streptococcus mutans (S. mutans) at the time of initial tooth eruption, thus enabling a comparison regarding the timing of colonization with remaining children in the larger study who were colonized in the pre-dentate stage. Participants were examined, and samples of biofilm (plaque) were collected at 3-month intervals until children reached 2 years of age. Despite the study by Lindquist et al.23 being 7 years in duration, it had few participants (n-12) Fig. 2. Flow chart illustrating the outcome of each stage of Search 1 addressing the association between the acquisition of oral cariogenic bacteria and caries outcomes in infants. Table 2. Study overview and quality appraisal summary and results of Search 1 addressing the association between the acquisition of oral cariogenic bacteria and caries outcomes in infants. | | Quality appraisal | ıppraisal | | | | | Study overview | | | | |---|-------------------|-----------------------------|------------|---|---------------------|---|--|---|--|--------------------------| | Author
and year | Overall | Materials
and
methods | Results | Country
Results Applicability of study | Country
of study | Population
selection | Study design | Study focus | Sample size | Age range
infant data | | Wan et al.
2003 ²¹ | High | High | High | High | Australia | C H RB SEBG
with no 5m pre- | Longitudinal
cohort (0–
24 months) | Infection rate, ages Sm
colonization and | 111 C | 6–24 months | | Teanpaisan Medium Medium et al. | Medium | Medium | Medium Low | - code | Thailand | C MIHC H LIF | Longitudinal (0
–24 months)* | Relationship bacteria to caries development | n = 198 C | 9–24 months | | 2007 ²²
Lindquist
et al. | Low | Medium | Low | MOT | Sweden | PW H with both Longitudinal Sm and Ss (7 years) | Longitudinal
(7 years) | M-C Bacterial transmission
and subsequent caries | n = 12 M; $n = 15 C$ 6 months –7 years | 6 months –7 years | | 2004 ²³
Mohan
et al.
1998 ²⁴ | Low | Low | Low | Low | US | M.C.LiF MiHC Cross-sectional | Cross-sectional | Risk factors and MS
acquisition | n = 118 MC | 6-24 months | C, child; H, hospital attendees; LIF, low income/socio-demographic families; M, mothers; MR, mainly rural families; MS, Mutans Streptococci; MIHC, mother/infant health care centre attendees; PW, pregnant women; RB, recruited at birth; SEBG, socio-economically balanced population group; Sm, Streptococcus mutans; Ss, Streptococcus sobrinus; UTR, Unable to report (insufficient detail). *Part of prospective study aiming to follow children birth – 24 years of age. mothers, n = 15 children), which restricted reviewers' ability to draw conclusions about the sample population and, in addition, lacked a description of both the sample population group and the population frame. The study by Teanpaisan *et al.*²² was a large prospective longitudinal study undertaken in Thailand where there is a high prevalence of ECC among the population. This study reported data from 9 months of age and sought to identify a relationship between bacteria and caries development. All studies varied in their population samples (Table 2). The study by Mohan *et al.*²⁴ in the United States was undertaken in a low socio-economic group of mothers and their infants. The study by Teanpaisan *et al.*²² was conducted in Thailand. The study by Lindquist *et al.*²³ was undertaken in Sweden with a small sample of 12 mothers and their 15 children; the sample and sampling frame were not described. Of all the studies, the study by Wan *et al.*²¹ rated highest in applicability. It reported a cohort sample representative of the general Australian population. Different methods were used to collect and measure bacterial samples in each study (Table 3). For example, the sample type and location ranged from Mutans Streptococci (MS) and/or *S. mutans* in saliva, plaque, tongue scrapings or a combination of sites; in addition, techniques used for plating and pro- cessing samples varied. This would have resulted in different numbers of colony-forming units (CFU) following cultivation. Methods used to identify and enumerate CFU varied from direct visual techniques to microscopy or colony counters. Only the study by Wan et al.²¹ used control plates with known bacterial concentrations during the incubation process. The variety of sample collection and analytic methods used for bacterial measures was also apparent in the diagnosis and reporting of dental caries (Table 4). Studies varied from reporting early lesions, to recording frank cavitations only. In one study²⁴, participant groupings varied, precluding the ability to follow groups of children across time points or assessments. The results of the above four studies are summarized (Table 5). Three studies $^{21, 22, 24}$ detected cariogenic bacteria in infants before their first birthday; Teanpaisan *et al.* 22 reported MS in 1.78% of the pre-dentate infants (n=169) as young as 3 months and caries in 9-month-old infants. The longitudinal study by Wan *et al.* 21 detected *S. mutans* in 5% of 312 children <1 month of age and 18% at 6 months of age. Further, the study by Mohan *et al.* 24 reported 4/22 children were colonized with MS by 6–9 months of age. The study by Lindquist *et al.* 23 did not detect *S. mutans* until the infants were aged between 1.5 and 5 years; 5/15 children had no detect- Table 3. Bacterial sampling techniques and analyses used in four studies. | Techniques | Mohan et al. ²⁴ | Lindquist et al. ²³ | Wan et al. ²¹ | Teanpaisan
et al. ²² | |--------------------|--|---|--|---| | Bacteria site | Tongue
(moistened) | Plaque (biofilm), saliva and tongue (scraping) | Plaque (biofilm), Tongue | Saliva | | Collection
Tool | Wooden tongue
blade | Edentate: cotton
Swab dentate: toothpick | Cotton tips | Wooden
tongue
depressor | | Collection site | Dorsum of tongue | Ridges and tongue scrapings taken with toothpick from dried tongue (as separate samples) | Tongue and tooth surfaces | Into oral cavity | | Processing | Pressed onto agar
plates of MS
selective media
and cultivated | Pre-dentate: swabs streaked directly onto MS selective agar plates Dentate: Plaque and tongue scrapings into separate vials of RTF transport medium; serially diluted and cultivated on MS selective media and cultivated | Phosphate buffered saline, diluted and plated on Sm selective media and cultivated. Control plates with known cultures also used | Immediately
pressed onto
petri dishes
and cultivated | | Assessment | Visual count by morphology | Morphology | Colony counter | Microscope by
morphology | Table 4. Methods used to measure caries experience in four studies. | Methods | Mohan et al. ²⁴ | Lindquist et al. ²³ | Wan et al. ²¹ | Teanpaisan et al. 22 | |---
---|---|---|--| | Age
assessed | n = 22, 6–9 months
n = 31, 10–13 months
n = 22, 14–17 months
n = 34, 18–21 months
n = 9, 22–24 months | Visually at each sampling session ages:
6 monthly from 6 months of age
until 3 years then annually till 7 years | 3 monthly | 9, 12, 18 and
24 months | | Measures
used to
diagnose
caries | Modified Radike criteria: Fissures: probe resists removal or loss of translucency; Smooth surfaces: enamel penetrated or scraped away by probe) | Clinical records and radiographs: After study period: Initial and frank lesions also filled surfaces. Findings compared and joint diagnostic decision made. | WHO criteria:
(frank lesions
only recorded)* | WHO criteria: d ₁ (enamel) d ₂ (dentine) d ₃ (pulpal involvement) | | Examiner | One dentist | Two dentists (records reviewed post hoc): joint diagnostic agreement where necessary | One examiner:
intra examiner
consistency
established | Five dentists: Kappa
scores for inter and
intra examiner
reliability | ^{*}From personal contact with researchers. able levels of *S. mutans* during the 7-year study period. Caries was not detected in infants aged 18 months or less in three studies^{21,23,24} (Table 5). The study by Wan et al.21 used cavitated lesions as the criterion for the presence of caries (W. K. Seow, Personal communication), and by the time the children were 24 months of age, of the 111 infants who were colonized with S. mutans, caries was found in 8 (9%). The study by Mohan et al.²⁴ used modified Radike criteria and diagnosed caries at ages 20 and 21 months (n = 3). Diagnosis of caries in the study by Lindquist et al. 23 relied upon interpretation using dental records and radiographs of initial, frank and restored lesions. Although dental assessments were undertaken during the study period, assessment of the dental records did not take place until the end of the study when the authors reported caries in 7/15 children. In summary, three of the four studies (Table 5) reported the presence of cariogenic oral bacteria in the pre-dentate and very early dentate stages of an infant's life^{21,22,24}, and one study reported caries occurring soon after tooth eruption in a few children²². All four studies reported finding caries in children during the study period, and in every child with diagnosed caries, MS or *S. mutans* was present; however, not all children harbouring these bacteria developed caries during the study period. The four studies demonstrated a relationship between the acquisition and levels of cariogenic bacteria in an infant and several mediating factors (Table 5). The most significant factors reported by Wan et al.21 that potentially increased a 9-month-old child's exposure to higher levels of bacterial transfer were habitual kissing on the lips or having their food pretested; sharing eating utensils or being exposed to dietary sugars four or more times per day. At 12 months of age, there was a shift to child-related risk factors predominating: being formula-fed on demand; snacking four or more times per day or sharing of food with others; spending more than ten hours per week in a child care facility; and an infant not having their teeth brushed at least twice a day²¹. Maternal influences increasing levels of S. mutans in an infant were predominantly family income and mother's education for infants at both 9 months and 12 months²¹. In addition, maternal oral health in relation to her S. mutans levels and periodontal pocketing depths was considered important, as was maternal snacking of four or more times per day²¹. The study by Mohan et al.²⁴ found that in children aged 6–24 months (Table 5), colonization increased with the number of teeth present and sweetened beverages in bottles. This study reported on bottle usage in terms of children who consumed either sweetened beverages or plain milk in their bottles or did Table 5. Results of four studies addressing oral bacteria in relation to ECC. | Author, year and study design | Results | Risk factors | Level of risk | |---|---|--|--| | Mohan et al. ²⁴ Cross-sectional (n = 122 infants) | MS:
4 of 22 colonized
6–9 mos | Age: MS colonization more likely increasing infant age | OR = 4.0, Cl 95% = 1.2–12.6 | | (, ,, ,,,, | Caries:
First detected
20 mos | Bottle usage/content: consumption of sweetened beverages
versus milk or no bottle usage (6–24 mos) | | | Wan et al. ²¹ Longitudinal (n = 111 infants) | S. mutans:
6 mos = 1%
9 mos = 12%
12 mos = 37%
15 mos = 54%
18 mos = 68% | Consuming pre-tasted foods at 9 mos | OR = 6.4, 95% Cl = 2.9–14.5 | | | Caries: First detected 24 mos = 9 with caries | Sharing eating utensils > 3/day at 9 mos | OR = 4.6, 95% CI = 2.3–9.5 | | | Carica | Total sugar exposures at 9 mos > 3/day | OR = 4.6, 95% CI = 3.0-13.4 | | | | Habitually kissed on lips at 9 mos | OR = 6.4, 95% CI = 3.0-13.4 | | | | Brushing habits ≤ 1/day at 12 mos (parental-assisted positive association) | OR = 2.1, 95% CI = 1.2–2.6 | | | | Snacking > 3/day at 12 mos | OR = 5.6, 95% CI = 2.3–9.5 | | | | Formula feeding on demand at 12 mos
Low total income families | OR = 8.9, 95% CI = 1.9-41.6
9 mos = $P < 0.01$
12 mos = $P < 0.03$ | | | | Mother's primary education higher risk at 9, 12, 15 mos
 , | | | | Maternal Sm levels 10 ⁵ CFU/mL | OR = 2.1–8.5, 95% CI = 1.2–
27.6 | | | | Mothers' oral health status: | OR = 1.6-5.3, 95% CI = 0.3- | | | | periodontal pocketing (CPI > 2) | 30.1 | | | | Maternal plaque covering > 50% dentition | OR = 3.8-18.8, 95% CI = 0.9
-84.0 | | Teanpaisan et al. ²² | MS:
3 mos = 1.78% | Bacterial level more important than age at colonization ECC if MS ≥ 50 CFU (CFU/1.5 cm²) | OR = 13.01, 95% CI = 2.89-
58.52 | | Longitudinal
(n = 198 infants) | 9 mos = 17.75%
12 mos = 28.63% | ECC # M/3 2 30 CF0 (CF0/1.3 Cm) | 50.52 | | THE TAX COMPANY | 18 mos = 47.34%
Caries:
9 mos = 4.2%
12 mos = 29.9% | | | | 3- | 18 mos = 83.1% | The state of s | and production of the second s | | Lindquist et al. ²³ Longitudinal ($n = 15$ infants) | MS:
<1.5 yrs = 0
<7 yrs = 10/15
Caries:
18 mos = 0 | Homology of genotypes between mothers-infants found | | MS, Mutans Streptococci; mos, months of age; OR, odds ratio; CI, confidence interval; *S. mutans, Streptococcus mutans*; CFU, colony-forming units; CPI, community periodontal index; ECC, early childhood caries; yrs, years of age. not use a bottle at all. The paper did not report on frequency of consumption, whether night-time bottle-feeding was occurring, or whether the children were breast fed or received a sugar intake from sources other than from the bottle. The study by Teanpaisan *et al.*²² concluded that the bacterial level was more important than the age of acquisition in subsequent caries experience, and in addition, children who harboured MS before the sample population mean age of 16.7 ± 6.7 months had a higher number of decayed teeth at all ages. However, this was not statistically significant until 24 months of age. Further, children 12 months of age who had detectable levels of MS had a 13-fold risk of developing caries. This study did not investigate other determinants that may modify bacterial levels and disease process, such as frequency of feeding and bottle contents. # Search addressing all proposed determinants of ECC (Search 2) This search focused on a broad range of determinants in an effort to identify and describe the risk and/or protective factors that modify cariogenic bacterial acquisition. The stages of the review process are shown (Fig. 3). A total of 313 papers were reviewed by title and abstract; of these, 13 duplicates and a further 285 papers were excluded. The main reasons for exclusion were the papers did not report on children aged 12 months or younger (n = 151), were not studies (e.g. paper was a review, report, guideline etc. n = 65) or were outside the scope of the study aim (n = 33). Full texts were obtained for the remaining 17 papers; of these, two papers were excluded in the second sieve as they did not meet the CASP screening criteria¹⁷. In addition, two foreign language papers, which, despite seeking the opinions of at least two translators for each, were unable to be translated sufficiently to subject them to a quality appraisal and were therefore also excluded at this point; 13 papers were then quality-appraised. The quality appraisals of the 13 papers are shown (Table 6). The studies were rated on three criteria (reliability, internal validity, external validity) as high, medium or low, and an overall weighting was then developed. Three papers^{21,29,32} were rated overall as high; of these, one was a RCT²⁹, and two were longitudinal cohort studies^{21,32}. Four papers^{22,26,30,31} were rated medium, and of these, two were RCTs^{26,30}, and two were longitudinal cohort studies^{22,31}. The remaining six papers^{24,25,27,28,33,34} were rated low. Of these, three were RCTs^{25,27,28}, and three were cross-sectional^{24,33,34}. Of the longitudinal cohort studies, the study by Wan *et al.*²¹ rated high in all three categories (Table 6). This study of an Australian population was a cohort (n = 111) subset of a larger study (n = 312) and provided Fig. 3. Flow chart illustrating the outcome of each stage of Search 2 addressing all proposed determinants of early childhood caries. Table 6. Study overview and quality appraisal summary and results of Search two addressing all proposed determinants of early childhood caries. | | Quality appraisal | ppraisal | | | | | study overview | | | | |---|-------------------|-----------------------------|------------|---------------|---------------------|---|------------------------------------|--|--------------|--------------------------| | Author | Overall rating | Materials
and
methods | Results | Applicability | Country
of study | Population
selection | Study design | Study focus | Sample size | Age range
infant data | | Wan et al. ²¹ | High | High | High | High | Australia | HB pre- and full | Longitudinal
(>24 months) | Bacterial
colonization | n = 111 C | B-24 months (3 monthly) | | Ñakai et <i>al.</i> ²⁹ | High | Higĥ | High | Medium | Japan | PW
MICH >10 ⁵ CFU/ | RCT (NR approximately | Bacterial transmission | n = 107 M | 0-9 months | | | High | High | High | Low | Thailand | NVS | Longitudinal | SES and risk factors | n = 495 C | 9, 12, 18 months | | er <i>al.</i>
Dasanayake | Medium | Medium | Medium | Medium Medium | USA | PW MIHC;
2 5 > 10⁴ CEII/mI | RCT (4 years) | Bacterial transmission | n = 75 MC | 1, 2, 3 year (birthdays) | | et al."
Teanpaisan
et al. ²² | Medium | Medium | Medium Low | Low | Thailand | RPLIF MIHC/H | Longitudinal
(>24 months) | Infant
feeding | n = 1076 C* | 6–18 months | | Habibian
et al. ³¹ | Medium | Medium Medium | rom | Medium | England | AP HB | Longitudinal (NR
approximately | practices
Infant
feeding | n = 163 C | 6, 12, 18 months | | Feldens
et al. ³⁰ | Medium | High | Low | Low | Brazil | M HB LIF | 30 months)
RCT (field) (1 year) | practices
Role of
health | n = 500 MC | 0-4 years | | Mohan
et a/ ²⁴ | Low | Medium | Low | Low | USA | LIF WIC CS | Cross-sectional | education
Infant
feeding | n = 122 C | 6-24 months | | Fontana | Low | Medium | Low | Low | NSA | MÍCH/Ads 10 ⁵ CFU ⁷ | RCT (10 months) | practices
Bacterial
transmission | n = 97 M | 0-14 months | | et al. ²⁸
Brambilla | Fow | Low | Low | Low | italy | PW H with 10 ⁵ CFU/ | RCT (30 months) | Bacterial | n = 60 MC | 6-24 months | | et al. ²⁵
Singh <i>et al.</i> ³³ | Low | Low | Low | ĹòŴ | Ë | MIHC NFD | Čross-sectional | Infant
Infant
feeding | n = 102 C | 6–12,13–24,25–36 months | | Franco | Low | Low | Low | Low | USA | MICH LIF NFD | RCT (30 months) | practices
Role of
counselling | n = 132 MC | | | et al.".
Qin et al. ³⁴ | Low | Low | Low | Low | China | HKCNŲŚ | Cross-sectional | SES and risk | n = 514 C | <4 years | A, adults; Ads, advertising; AP, affluent population; B, birth; C, child; CFU/mL, colony-forming units per millilitre cariogenic bacteria; H, hospital attendees; HB, hospital birth; K, kindergarten/preschool attendees; LIF, low income/socio-demographic families; M, mothers; MC, mothers/parent child pairs; MIHC, mother/infant health care centre attendees; NFD, no further detail; NR, not very specific; PW, pregnant women; RCT, Randomized control trial; RP, representative of broader population group; VCD, vaccination campaign day; WIC, attendees Women Infant Children clinics. *Nor all of these examined dentally and bacterial samples taken. detailed information on the population, methods used and data validation. The study by Thitasomakul *et al.*³² also rated as high overall. As it was conducted mainly in rural Thailand, its applicability to Victorian/Australian populations was limited. Studies rated medium were those of Teanpaisan *et al.*²² and Habibian *et al.*³¹ These studies lacked some features of the higher rated studies including recruitment methods, participant attrition, reporting and methods. Three papers^{21, 22, 24} were common to both searches and have been addressed above. The remaining ten papers will now be considered (Table 6). Four studies (all RCTs) investigated bacterial transmission from mother to infant. Of these, two studies, which intervened to reduce maternal bacterial load during pregnancy^{25, 29}, demonstrated that if the level of maternal MS was decreased prior to tooth emergence, bacterial acquisition in the infants was either delayed²⁹ or resulted in fewer children infected with MS, than in the control group²⁵. In fact, Nakai et al.²⁹ found transmission could be delayed significantly by as much as 8.8 months compared with the control group, and Brambilla et al.25 reported colonization was delayed by 4 months. A third study, by Dasanayake et al.26, which intervened to reduce maternal bacterial load at infant age 6 months, was unable to demonstrate such a finding despite demonstrating significant reduction in maternal bacterial load. The fourth study, by Fontana et al.28, was unable to reduce maternal levels of bacteria, and hence, there was no effect on infant bacterial acquisition. Of the above four studies, infant caries experience was reported only by Dasanayake et al.²⁶ (Table 6). This study reported the presence of caries in children at 48 months of age; however, owing to the time lapse between study publication and the present review, on personal contact, the author was unable to recall at what ages caries was first detected in the children (A. Dasanayake, Personal communication). Both Fontana et al.²⁸ and Nakai et al.²⁹ undertook dental assessments. On personal contact, Fontana reported their study was limited to saliva and biofilm assessments and was not designed to measure short term caries experience (M. Fontana, Personal communication). The study undertaken by Brambilla *et al.*²⁵ did not include a dental assessment of the infants. In total, eight of the ten studies conducted a dental assessment, with five studies reporting caries
experience in children by 18 months of age^{27,30,32–34} (M. Qin, Personal communication) ³⁴. One study³¹ found all children studied were caries-free at both 12 and 18 months of age; two further studies either did not report the assessment outcome undertaken at 12 months of age²⁸ or did not report the assessment age²⁶. The main factors identified (Table 6) appearing to increase an infant's risk of early bacterial acquisition, and higher levels of colonization were maternal factors, such as low level of education32,34; poor oral health knowledge34; and maternal calcium supplementation and milk intake during pregnancy and the first year post-natally³². Maternal oral health and bacterial levels were assessed also. The study by Thitasomakul et al.32 found an association between maternal caries levels and bacterial levels in infants. Infant feeding practices were identified as being associated with ECC in some studies and this included night feeding^{30,34}, and habits of testing and sharing of food and eating utensils^{28,34}. The frequency and types of food and liquids introduced, and the age of the infant at the time of their introduction³¹⁻³⁴, were reported as important modifiers in the disease process. Oral hygiene practices, in particular brushing an infant's teeth³², another modifying factor identified^{21, 31}. Only one study, by Habibian et al.31, undertaken in a high socio-economic group in Southern England, reported toothbrushing had commenced in 90% of infants by 12 months of age, and fluoridated paste was used in 85% of infants (Table 6). Despite the presence of plaque accumulation and risk behaviours occurring such as nonmilk extrinconsumption (which sugar (NMES) comprised 46%, 60% and 67% of 6-, 12- and 18-month-old infants' mean daily frequency of eating and drinking episodes respectively), all children remained caries-free. This study also reported that infant feeding practices may be established by 6 months of age, with mean daily frequencies of food and drink consumption not differing significantly at 6, 12 and 18 months of age. #### Discussion The findings of this review have confirmed and identified a range of factors occurring during the first year of an infant's life that impact on early caries experience. Typically infants are totally reliant upon their mothers during this time; hence, there were no studies identified in the search that explored paternal or sibling influences that may affect this age group. As a result, this review is limited to commenting on the outcomes of those studies that explored maternal influences and circumstances as they impact on the infant, rather than those of the broader family. A synopsis of all the papers addressing risk and protective factors for bacterial levels and ECC is shown (Table 7). In all cases where infant caries experience was reported, bacterial acquisition and colonization was present, and the likelihood of colonization increased with the age of the infant. However, not all children harbouring these bacteria developed caries during the study periods. This feature is consistent with the multifactorial nature of the disease: although cariogenic bacteria are a significant factor in caries development, other factors such as feeding habits and the frequency and/or type of food and liquids conthe infant modify disease sumed by progression (Table 7). In addition, factors were identified with the potential to provide a protective influence on the infant oral environment in relation to subsequent early caries experience. Along with reducing maternal bacterial load before the time of infant tooth emergence, which would delay bacterial acquisition, regular infant toothbrushing and the use of fluoridated toothpastes were reported (Table 7). One study also identified that infant feeding habits may be established as early as 6 months of age, and this too may have important implications for risk of caries experience in terms of influencing frequency of dietary intake as well as developing infant preference for particular types of foods. Bacterial acquisition, colonization and subsequent ECC The studies demonstrated that infants can be colonized with cariogenic bacteria during the pre-dentate stage, with some children colonized as early as 3 months of age. Further, the studies showed an association between bacterial acquisition and maternal bacterial levels; hence, a vertical pathway for transmission of these bacteria occurs. Notably, in studies where bacterial transmission was investigated, the timing of reducing maternal bacterial levels to achieve a delayed or reduced level of infant bacterial colonization was important. # Influences of the mother and her circumstances In studies where oral health education was provided to mothers aiming to change attitudes and practices and so reduce risks of poor infant oral health outcomes, it was found that some, but not all, risk behaviours were altered; despite knowledge of some of the risk factors, risk behaviours often continued. It is important then, if oral health promotion programs are to be implemented, to first identify why some health behaviours were adopted and others were not. In fact, it may well be that there are important determinants affecting a mother's ability to recognize and respond to risk behaviours. Factors not identified in the review that may add further complexity include those identified in the broader social determinants of health, such as maternal cultural beliefs and influences^{13, 35, 36}, her level of autonomy in decision-making within the family, coping skills and supportive networks^{37–40}, as well as her past dental experiences, access to personal dental care and related oral health information⁴¹. # Infant feeding, behaviours and practices From the studies, it was apparent that not only were particular habits or behaviours thought to affect an infant's susceptibility to bacterial acquisition, levels and ECC experience, but the timing and frequency of the Table 7. Synopsis of papers addressing risk and protective factors for bacterial levels and early childhood caries. | Influence | Factor | Positive associations | Author | |---|--|---|--------------------------------------| | Maternal influences primarily associated with bacterial acquisition | Maternal Streptococcus mutans | Bacteria 6 months $P = 0.002$ | Brambilla
et al. ²⁵ | | 2233 | Į. | Bacteria by 8.8 months | Nakai et al. ²⁹ | | | Mother's caries ≥ 4 teeth | Bacteria OR 2.1 | Wan et al.21 | | | | Caries $P = 0.05$ | Thitasomakul
et al. ³² | | | Pre-tasting foods | Bacteria 9 months OR = 6.4 | Wan et al.21 | | | | Caries <i>P</i> < 0.001 | Qin et al. ³⁴ | | | Sharing eating utensils | Bacteria 9 months OR = 4.6 | Wan et al. ²¹ | | | Control of the Contro | Bacteria P = 0.009 | Fontana et al. ²⁸ | | | Low income | Caries 9 and 18 months | Thitasomakul
et al. ³² | | | Mother's education (primary level) | Bacteria 9 and 12 months
OR = 2.1 | Wan et al. ²¹ | | | • | Caries $P = 0.023$ | Qin <i>et al.</i> ³⁴ | | | | Caries 12 and 18 months | Thitasomakul | | | | <i>P</i> < 0.05 | et al. ³² | | | Mother's education | Caries 22% RR 0.78; 95% Cl
0.50-0.92 | Feldens et al. 30. | | Behaviours and habits primarily associated with | Sweetened beverages | Caries OR = 4 | Mohan et al. ²⁴ | | bacterial colonization | | Caries < 5 months | Thitasomakul | | | | $(1.2 \pm 2.8 \text{ ds})$ | et al. ³² | | | المحمد المعتدد المعتدد والمتعدد المتعدد المتعد | Caries <i>P</i> < 0.001 | Qin et al. ³⁴ | | | Total sugar exposures | Caries <i>P</i> < 0.0001 | Habibian
et al. ³¹ | | | | Bacteria 9 months OR = 4.6 | Wan et al. ²¹ | | | | Caries <i>P</i> < 0.001 | Qin et al. ³⁴ | | | Brushing habits | Caries | Habibian
et al. ³¹ | | | | Bacteria 12 months OR = 5.6 | Wan et al. ²¹ | | | | Caries 9 and 18 months |
Thitasomakul
et al. ³² | | | Snacking | Caries 6 months | Habibian
et al. ³¹ | | | | Bacteria 12 months OR = 5.6 | | | | * | Caries | Singh et al. ³³ | | | | Caries 9 and 18 months | Thitasomakul
et al. ³² | | | | Caries | Feldens et al.30 | | | Night feeding | Caries <i>P</i> < 0.001 | Qin et al.34 | | | Colonization more likely with | Bacteria | Mohan et al.24 | | | increasing age | Caries | Teanpaisan
et al. ²² | | | | Bacteria | Fontana et al. ²⁸ | DS, Decayed Surfaces. habit must also be primary considerations. Some habits were shown to be more likely to pose a greater risk for poor oral health outcomes depending upon the developmental stage of the infant, whereas other habits seemed to pose an increased risk for poor oral health outcomes regardless of the child's age. Consumption of NMES is an example from several studies examining the link between feeding practices and either bacterial levels or caries experience. Testing/tasting of foods before feeding to an infant and sharing of eating utensils during a meal were identified as risk factors for higher bacterial levels particularly in younger children. The introduction of commercial cereals at 3 months and vegetables into the diet by 6 months of age was suggested to be protective in nature. One study found that habits developed in relation to an infant's diet by 6 months of age affected dietary behaviours at both 12 and 18 months, suggesting that establishing healthy eating patterns early could well contribute to reducing risk of caries experience. This supports the findings of Gussy *et al.*⁴² who found that the frequency of dietary intake in preschool-aged children was more important than the amount, and Mattos-Graner *et al.*⁴³ who reported salty foods introduced to infants younger than 7 months of age showed a lower prevalence of caries compared with infants who were not introduced to these foods by 7 months. As not all children exposed to these risk behaviours necessarily develop elevated bacterial levels and/or caries, we presume that factors such as the level of the bacterial acquisition and subsequent colonization must rely upon the amount of bacteria transferred during the behaviour, and how often this occurs, to determine the level of risk. In addition, there was some evidence that regular toothbrushing and use of fluoridated toothpaste are protective, despite risk behaviours occurring. It is uncertain from the two studies reporting this finding whether it is regular toothbrushing or the use of fluoridated toothpaste per se that reduces the risk of caries, or whether other factors more closelv linked to the higher socio-demographic populations contribute. #### Recommendations This systematic review of the literature identifying risk factors during the first year of life makes the following recommendations: - Mothers with high levels of cariogenic bacteria must be identified during the prenatal period, and their bacterial levels reduced prior to infant tooth eruption in an effort to delay and/or reduce the levels in their infants. Ongoing social networks must be developed to support new mothers in identifying and minimizing risk behaviours affecting their children. - The interrelationships between cariogenic bacteria, mediating factors occurring during the first year of life and subsequent caries outcomes require further clarification to identify and quantify key predictors. This would enable the provision of effective support mechanisms for health educators, practitioners and parents, to reduce infant caries experience. • Consistency among researchers to measure oral health outcomes (principally caries) in infants and toddlers is needed to enable a more accurate knowledge base of caries onset, incidence and prevalence. #### Conclusion Caries prevention commencing before and continuing into the early dentate period is necessary. This review has confirmed current thought that ECC has important causative factors in the first year of life. Cariogenic bacteria were shown to be a significant risk factor for ECC. Maternal factors were shown to influence bacterial acquisition but, although influences modifying baccolonization were identified, relationship with subsequent caries development was not clarified. This was due primarily to the complex nature of the disease and infant age; however, factors such as study design and/or techniques used to measure bacteria and subsequent caries experience limited study outcomes. Further exploration is required to better understand the complex nature of ECC, both the factors affecting its initiation as well as its progression, if infants and toddlers are to be spared the effects of this common and sometimes debilitating disease. # Why this paper is important to paediatric dentists - Bacteria present in the predentate stage play a significant role in early caries experience - Pregnancy and the neonatal period are the important times to identify 'at risk' children. - Early maternal intervention can reduce the likelihood of ECC. #### **Acknowledgements** The authors acknowledge with gratitude the scientific expertise contributed by Associate Professor Stuart Dashper and Emeritus Professor Louise Brearley-Messer; the research librarian support of Ms Poh Chua and Ms Cathy Gatt; the research assistance of Dr Shalika Hegde, and the support of Professor Hanny Calache. This study was supported by National Health and Medical Research council Research Scholarship No: 56718 and The Jack Brockoff Foundation. # **Conflict of interest** The authors have declared no conflict of interest. #### References - 1 American Academy on Pediatric Dentistry, American Academy of Pediatrics. Policy on early childhood caries (ECC): classifications, consequences, and preventive strategies. *Pediatr Dent* 2008; **30**: 40–43. - 2 Rosenblatt A, Zarzar P. Breast-feeding and early childhood caries: an assessment among Brazilian infants. *Int J Paediatr Dent* 2004; 14: 439-445. - 3 Carino K. Early childhood caries in northern Philippines. *Community Dent Oral Epidemiol* 2003; 31: 81–89. - 4 Douglass JM, Tinanoff N, Tang JM, Altman DS. Dental caries patterns and oral health behaviors in Arizona infants and toddlers. *Community Dent Oral Epidemiol* 2001; **29**: 14–22. - 5 Jin BH, Ma DS, Moon HS, Paik DI, Hahn SH, Horo-witz AM. Early childhood caries: prevalence and risk factors in Seoul, Korea. J Pub Health Dent 2003; 63: 183–188. - 6 Seow WK, Amaratunge A, Sim R, Wan A. Prevalence of caries in urban Australian aborigines aged 1–3.5 years. *Pediatr Dent* 1999; 21: 91–96. - 7 Slack-Smith LM. Dental visits by Australian preschool children. J Paediatr Child Health 2003; 39: 442–445. - 8 Neumann AS, Lee KJ, Gussy MG *et al.* Impact of an oral health intervention on pre-school children < 3 years of age in a rural setting in Australia. *Paediatr Child Health* 2011; **7**: 367–372. - 9 AIHW DSRU, Armfield J, Slade G, Spencer A. Water Fluoridation and Children's Dental Health: The Child Dental Health Survey, Australia 2002. Canberra: Australian Institute of Health and Welfare, 2007. - 10 Slack-Smith L, Colvin L, Leonard H, Kilpatrick N, Read A, Messer LB. Dental hospital admissions in children under two years a total-population investigation. Child: care, health & development. Doi; 10. 1111/j.1365-2214.2011.01360.x. - 11 Ramalingam L, Messer LB. Early childhood caries: an update. *Singapore Dent J* 2004; **26**: 21–29. - 12 Acs G, Shulman R, Ng MW, Chussid S. The effect of dental rehabilitation on the body weight of children with early childhood caries. *Pediatr Dent* 1999; 21: 109–113. - 13 Fisher-Owens SA, Gansky SA, Platt LJ *et al.* Influences on children's oral health: a conceptual model. *Pediatrics* 2007; **120**: 510–520. - 14 Berg P, Coniglio D. Oral health in children overlooked and undertreated. JAAPA 2006; 19: 40-51. - 15 Thomson WM. Socioeconomic inequalities in oral health in childhood and adulthood in a birth cohort. Community Dent Oral Epidemiol 2004; 32: 345–353. - 16 Parisotto T. Early childhood caries and Mutans Streptococci: a systematic review. *Oral Health Prev Dent* 2010; 8: 59–70. - 17 Public Health Resource Unit. Critical Appraisal Skills Program (CASP). 2009; http://www.phru.nhs.uk?casp/appraisa.htm (last accessed January 18, 2012). - 18 Marsh PD. Oral Microbiology, 5th edn. Edinburgh: Churchill Livingston, 2009. - 19 Fejerskov O, Kidd EAM, editors. Dental Caries the Disease and Its Clinical Management. Oxford: Blackwell Munksgaard, 2003. - 20 Glasziou P, Del Mar C, Salisbury J. Evidence-Based Practice Workbook, 2nd edn. Canberra: Blackwell, 2010 - 21 Wan AK, Seow WK, Purdie DM, Bird PS, Walsh LJ, Tudehope DI. A longitudinal study of *Streptococcus mutans* colonization in infants after tooth eruption. *J Dent Res* 2003; **82**: 504–508. - 22 Teanpaisan R, Thitasomakul S, Piwat S, Thearmontree A, Pithpornchaiyakul W, Chankanka O. Longitudinal study of the presence of Mutans Streptococci and lactobacilli in relation to dental caries development in 3–24 month old Thai children. *Intl Dent* 2007; 57: 445–451. - 23 Lindquist B, Emilson G. Colonization of *Streptococcus mutans* and *Streptococcus sobrinus* genotypes and caries development in children to mothers harboring both species. *Caries Res* 2004; 38: 95–103. - 24 Mohan A, Morse DE, O'Sullivan DM, Tinanoff N. The relationship between bottle usage/content, age, and number of teeth with Mutans Streptococci colonization in 6–24-month-old children. *Community Dent Oral Epidemiol* 1998; **26**: 12–20. - 25 Brambilla E, Felloni A, Gagliani M, Malerba A, Garcia-Godoy F, Strohmenger L. Caries prevention during pregnancy: results of a 30-month study. J Amer Dent Assoc 1998; 129: 871–877. - 26 Dasanayake AP, Wiener HW, Li Y, Vermund SH, Caufield PW. Lack of effect of chlorhexidine varnish on *Streptococcus mutans* transmission and caries in mothers and children. *Caries Res* 2002; 36: 288–293. - 27 Franco S, Theriot J, Greenwell A. The influence of early counselling on weaning
from a bottle. *Community Dent Health* 2008; **25**: 115–118. - 28 Fontana M, Catt D, Eckert G et al. Xylitol: effects on the acquisition of cariogenic species in infants. *Pediatr Dent* 2009; 31: 257–266. - 29 Nakai Y, Shinga-Ishihara C, Kaji M, Moriya K, Murakami-Yamanaka K, Takimura M. Xylitol gum - and maternal transmission of Mutans Streptococci. *J Dent Res* 2010; **89**: 56–60. - 30 Feldens CA, Giugliani ER, Duncan BB, Drachler Mde L, Vitolo MR. Long-term effectiveness of a nutritional program in reducing early childhood caries: a randomized trial. *Community Dent Oral Epidemiol* 2010; 38: 324–332. - 31 Habibian M, Roberts G, Lawson M, Stevenson R, Harris S. Dietary habits and dental health over the first 18 months of life. *Community Dent Oral Epidemiol* 2001; 29: 239–246. - 32 Thitasomakul S, Thearmontree A, Piwat S *et al.* A longitudinal study of early childhood caries in 9- to 18-month-old Thai infants. *Community Dent Oral Epidemiol* 2006; **34**: 429–436. - 33 Singh P, King T. Infant and child feeding practices and dental caries in 6 to 36 months old children in Fiji. *Pac Health Dialog* 2003; **10**: 12–16. - 34 Qin M, Li J, Zhang S, Ma W. Risk factors for severe early childhood caries in children younger than 4 years old in Beijing, China. *Pediatr Dent* 2008; 30: 122–128. - 35 Hilton IV, Stephen S, Barker JC, Weintraub JA. Cultural factors and children's oral health care: a qualitative study of carers of young children. *Community Dent Oral Epidemiol* 2007; 35: 429–438. - 36 Flores G, Tomany-Korman S. Racial and Ethnic Disparities in Medical and Dental Health, Access to - Care, and Use of Services in US Children. *Pediatrics* 2008: **121**: e286–e298. - 37 Reisine S, Douglass J. Psychosocial and behavioural issues in early childhood caries. *Community Dent Oral Epidemiol* 1998; 26: 32–44. - 38 Quinonez R, Keels M, Vann W Jr, McIver F, Heller K, Whitt J. Early childhood caries: analysis of psychosocial and biological factors in a high-risk population. *Caries Res* 2001; 35: 376–383. - 39 Bonanato K, Pariva S, Pordeus I, Ramos-Jorge M, Barbabela D, Allison P. Relationship between Mothers' Sense of Coherence and Oral Health Status of Preschool Children. Caries Res 2009; 43: 103-109. - 40 Smith P, Freeman R. Living in a sweetie culture: scottish parents' difficulties in maintaining their children's oral health. *Health Ed* 2009; **68**: 255–265. - 41 Davidson N. Equitable access to dental care for an at-risk group: a review of services for Australian refugees. ANZ J Pub Health 2007; 31: 73-80. - 42 Gussy MG, Waters EG, Walsh O, Kilpatrick N. Early childhood caries: current evidence for aetiology and prevention. J Paed Child Oral Health 2006; 42: 37–43. - 43 Mattos-Graner RO, Zelante F, Line RC, Mayer MP. Association between caries prevalence and clinical, microbiological and dietary variables in 1.0 to 2.5-year-old Brazilian children. Caries Res 1998; 32: 319–323.